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A c r i t e r ion  of nonuniformity is proposed for  the analys is  of heat exchangers  in which one 
of the heat c a r r i e r s  is nonuniformly distr ibuted.  General ized quanti tat ive re la t ions  a r e  
der ived which make it poss ible  to e s t ima te  the dec r ea se  of the regenera t ion  factor .  The 
bas ic  r e su l t s  a r e  ver i f ied  by an  exper imenta l  study. 

Heat exchangers  a re ,  as a rule ,  used under conditions where  the heat  c a r r i e r s  a r e  nonuniformly d i s -  
t r ibuted among the ducts in the block and this is in many cases  re la ted  to a cons iderable  lowering of their  
pe r fo rmance  indices [1, 2, 3]. The re  a r e  a g r ea t  many different  manners  in which the nonuniformity can 
va ry ,  which makes  the analys is  and the design of such appara tus  difficult while the feasibi l i ty  of gen e ra l -  
izing the r e su l t s  r em a i ns  thus cons iderably  l imited.  

These  diff icult ies can be la rge ly  ove rcome  by replacing the actual  veloci ty  prof i le  with a l inear  
relat ion.  Such a t r ans fo rma t ion  is pe rmis s ib l e  only insofar  as  the d i scharge  nonuniformity cr i te r ion ,  
which appea r s  to have a definite effect  on the change in the hea t -exchanger  pe r fo rmance  indices,  is m a i n -  
tained constant.  

We will p resen t  the r e su l t s  of a hea t -exchanger  eff iciency analys is  for  the case  where  one of the 
heat  c a r r i e r s  is nonuniformly distr ibuted.  

In choosing the nonuniformity c r i t e r ion  we consider  f i r s t  the possibi l i ty  of l inear iz ing the veloci ty  
prof i le  Gg in heat  exchangers  of the counterf low type (Fig. 1). In such a heat  exchanger  the individual 
e l emen ta ry  sec t ions  dx opera te  as  comple te ly  independent units. Fo r  this reason ,  we may a l t e r  their  
r e l a t ive  spat ia l  posi t ion while maintaining a constant  r egenera t ion  fac tor  (77~ = const). At the s a m e  t ime,  
however ,  the re la t ive  spacing of sect ions in the Gg profi le  will a lso  change. 

All these considera t ions  p rede te rmine  the p r e m i s e s  under which a profi le  Gg will be t r ans fo rmed  
* (Fig. 1). By way of such a t r ans fo rma t ion  one can reduce  all  the d ive r se  Gg invariant ly  with r e s pec t  to ~r 

prof i les  encountered in p rac t i ce  (curve 1) to a c lass  of monotonical ly varying functions (curve 2). The 
la t te r  can then be m o r e  or less  c losely  approximated  by l inear  re la t ions  (curve 3). 

Inasmuch as the effect  of d i scharge  nonuniformity on the hea t -exchanger  eff iciency depends not only 
on the degree  of nonuniformity but a l so  on the length of the sect ion it cove r s ,  a p a r a m e t e r  combining both 
these fac to r s  would be ve ry  convenient to use in the l inear iza t ion  of prof i le  Gg. One possible  choice for 
such a p a r a m e t e r  could be the mean- in t eg ra l  value of nonuniformity:  

l 

S = 0,5 S ]Gg-- lld'c" (1) 
0 

The deviation of the monotonical ly  varying profi le  f r o m  the l inear  re la t ion  approximat ing  it can be 
cha rac te r i zed  by the p a r a m e t e r  st, which is essent ia l ly  analogous to the p a r a m e t e r  s: 

1 

s, = 0.5 j" IGg-  [1 + a (2x - 1)][dx 
0 

or in re la t ive  f o r m  
6sl= (sl/s) 100%. (2) 
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Fig. 1. Schematic d iagram of a counterflow heat exchanger:  1) 
original  profile Gg; 2) monotonically varying profile Gg; 3) l inear 
profile Gg = 1 + a(2x - 1 ) .  

Fig. 2. Schematic d iagram of a crossf low heat exchanger. 

1-a'4 

If af ter  l inearizat ion of any a r b i t r a r y  Gg profile 6s 1 = 0 as a result ,  then the said t ransformat ions  
have been ent irely valid. If 6s 1 > 0 as a result ,  however,  then the linear Gg profile only approximately 
represen ts  the effect of d ischarge nonuniformity on the thermal  efficiency of the apparatus.  

In order  to es t imate  the level of 6s I values permiss ible  in any l inearizat ion process ,  the thermal  
efficiencies of a counterflow heat exchanger were calculated for a wide range of parameter  variat ions 
(Vr = 0.5-0.9, s = 0-0.25) and assuming two different gas discharge laws: a) a stepwise (original) discharge;  
b) a l inear d ischarge  obtained by l inear izat ion of the original Gg profile. 

As it turned out, the replacement  of a stepped Gg profile by a linear relat ion (under the condition that 
s = coast  for  both functions) yields a relat ively smal l  e r r o r  in determining the magnitude of A~?. Thus, 
with 5s 1 = 25% the maximum e r r o r  in calculating s for all the cases  considered here  was less than 17%, 
while with 6s 1 = 10% it was less than 3%. 

The resul ts  of these calculations show that the determining factor  in lowering the thermal  efficiency 
of a heat exchanger is the mean- in tegra l  value of the nonuniformity and, consequently, this parameter  may 
be used as the c r i te r ion  of nonuniformity. 

The law according to which the nonuniformity var ies  a c ro s s  the front surface of a heat exchanger is 
of l e s se r  significance here and, therefore ,  the replacement  of any a rb i t r a ry  Gg profile by a l inear r e l a -  
tion is in many cases  permiss ib le ,  provided that the nonuniformity cr i te r ion  is maintained the same (s 
= coast) for  both functions. A s imi la r  cr i ter ion of aoauniformity can be used in the l iaeariz~tion of the 
velocity profi le in heat exchangers  of the crossflow type. The feasibili ty of t ransforming profile Gg invar i -  , 
sntly with respec t  to ~?r was in our csse  demonstrated as follows. 

The heat exchanger (Fig. 2) was subdivided into n 2 e lementary sections in such a way that the water  
equivalent rat io remained the same for the heat c a r r i e r  in each section and for  the total unit (COl, j = co). 
For  the Ni,j-th section we may then write:  

(T,.]_I . . g - -  ( 3 )  

rii~ = T~,i-:g '1~,5 (Tg i - ' - T t a - ' ' i )  " (4) 

On the basis of express ions  (3) and (4), the method of mathematical  induction was now applied to 
obtain express ions  for  the heat c a r r i e r  t empera tu res  at the exit of the Ni,j-th section: 
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Fig. 3. Variat ion of the regeneration factor as a function 
of the mean- in t eg ra l  d i scharge  nonuniformity (for ~ -- 1): 
1) 7r  = 0.5; 2) 7r  = 0.6; 3) 7r  = 0.7; 4) 7r  = 0.8; 5) 7r  = 0.9; 
solid line) c = 0; dashed line) c = 1. a) Counterflow; b) 
orossflow; e) Z-flow. 

j - - I  ~' 

- -  ~ j  1 t+~ C l 
k = 0  

]t 1 
Tg'l~ k=o { kl (]--k), :k { ~ [ - - ( - - l ) t + h ~ / C ' , ~ ,  t *-'~-~'~--~Fk")] 

i 

The symbols  used in these  fo rmulas  have the following meaning: ~ C~ is the sum of al l  produets  

combining l - f a c t o r s  out of i e lements  (71, 72, 73, �9 �9 �9 , 7i) without repet i t ions ,  C i ~ I" is  the product of 

one combinat ion (product) C/. by the sum of all  products  F k c o m b i n i n g / - f a c t o r s  (contained in the combina-  
1 

l--1 tion C~) out of k e lements  with repet i t ions ,  C i _ t  ~ r k  is the product of one combinat ion {productt c il-t_t 

by the sum of all  products  F k combining / - f a c t o r s  (of which e lement  1 - 1  is contained in the combination 

ctl -t_t, and another  e lement  7i) out of k e lements  with repet i t ions .  It is a l so  assumed, that F~ = C~_t = 1. 

The meaning of these  symbols  can be i l lus t ra ted  by the following examples" 

2 § ~ (~ + % + ~ )  + ~ (~ + ~ + ~ ) ,  

2: (c~:,, 2~ r, ~) = 2: (c~ ~ r~) = ~, (~ + ~ + ~,~,) + ~ (~ + ~,~ + ~ , ) .  

If the values  i = n a r e  inser ted  into Eq. (5), a re la t ion  will be obtained for  calculat ing the a i r  t e m -  
p e r a t u r e s  Tn, j at  the exit f r o m  the heat  exchanger .  An analys is  of this re la t ion  has led to the following 
conclusions: 

1. The H i values for the individual elementary sections enter into the expression for T n'j as the sum 

of products (combinations) C l n" 
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Fig. 4. Schematic diagram of the experimental setup: i) 
valve; 2) measuring diaphragm; 3) resistance thermo- 
meter; 4) paranite packing seal with holes for equalizing 
the velocity field; 5) grid; 6) heat exchanger; 7) copper 
plate with holes for equalizing the temperature field; 8) 
electric heater; 9) mixer; 10) mercury thermometer. 

2. All  the 77 i va lues  a r e  used in f o r m i n g  these  p roduc t s  (combinat ions) .  

In this  way,  the e x p r e s s i o n s  for  T n,j  and, consequent ly ,  a l so  for  the r e g e n e r a t i o n  f ac to r  77r a r e  
s y m m e t r i c  with r e s p e c t  to the va lue  of ~7i = f(Ggi) as  wel l  a s  independent  of the spat ia l  d i s t r ibu t ion  of s e c -  
t ions.  This  then e s t a b l i she s  the feas ib i l i ty  of t r a n s f o r m i n g  a Gg prof i le  in c r o s s f l o w  heat  exchange r s  in -  
va r i an t l y  with r e s p e c t  to H r.  F u r t h e r m o r e ,  such  a t r a n s f o r m a t i o n ,  when applied to the case  of  a heat  
c a r r r i e r  u n i f o r m l y  d i s t r ibu ted  among  the ducts  in the block,  l eaves  the t e m p e r a t u r e  prof i le  at  the h e a t -  
exchange r  exit  a l so  invar iant .  

A n u m e r i c a l  a n a l y s i s  was  p e r f o r m e d  with the fol lowing a s sumpt ions .  

The d i s c h a r g e  nonun i fo rmi ty  was  g iven  by the l inear  r e l a t ion  Gg = 1 + a (2x - 1) and the c o n c u r r e n t  
v a r i a t i o n  of the loca l  h e a t - t r a n s f e r  coef f ic ien t  by  the r e l a t i o n  k x = kG~. 

By subs t i tu t ing  k x = f (agx ,  aa )  and k = f (ag ,  aa )  we obtained an  e x p r e s s i o n  fo r  c = f{Gg, ag ,  aa) .  In 
o r d e r  to s impl i fy  the ca lcu la t ion ,  the s l ight  dependence_of c a c r o s s  the b lock  face  on Gg was  d i s r e g a r d e d  and 
the value of c was  taken as  equal  th roughout  to that  fo r  Gg = 1: 

rl  r C ~  

1 + ~ g ~ / % ~ a  ' 

w h e r e  ng is the exponent  of Reg  in the r e l a t i o n  Nug = AgReg~. 

The r e l a t i v e  change in the gas  t e m p e r a t u r e  ~?gi = (tgl - t ~ ) / ( t g  I - tal) at  the Ni- th  e l e m e n t a r y  sec t ion  
of a counte r f low heat  exchange r  was  d e t e r m i n e d  by the equat ion [4]: 

M~i/(1 q-Mg,) for co i ~ 1, 

! - o x p  ,) Mg ] 
for to i :~ I, 

with wi = Ggi w and Mg i = k F / c r g G g G ~  -c. 

, . . i,j--1 i,j- i,j--t " " 
The ana logous  r e l a t i o n  ~gi = (tg - tg ) / ( t g  - ta -1'2) fo r  the Ni , j - th  e l e m e n t a r y  s ec t ion  of a 

c r o s s f l o w  heat  e x c h a n g e r  (Fig. 2) was  taken  f r o m  [5]: ~gi = M g i / [ 1  + 0.5(1 + wi)Mgi] with co i = Ggiw and 
- - 1  - - C  Mg i = k F / c r g G g n G g  i . The e r r o r  in ca lcu la t ing  ~Tgi is l e s s  than 1%, a c c o r d i n g  to the e s t ima te  made  by 

the au thor  of [5], if Mgi and wiMgi a r e  both l e s s  than 0.4. 
i The m e a n - m a s s  t e m p e r a t u r e  of the gas  at  the exit  was  de t e rmined  f r o m  tg 2 = Ggitg 2 for  a c o u n t e r -  

i = l  

= i,n 
flow heat  exchange r  and f r o m  tg 2 = Ggitg fo r  a c r o s s f l o w  heat  exchanger ,  the r e g e n e r a t i o n  f a c t o r  

i = l  
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was calculated f rom the formula 

[ ( fg l .  tg2)/(/gl - -  taj) for t~ ~ 1, 

~]r ---- ~ [ o (t~ - -  tg2)/(tgi - -  tal) for o) > 1. 

$ 

The resul t s  of these computer-a ided calculations a r e  shown in Fig. 3. 

The degree to which the discharge nonuniformity influences the heat-exchanger  efficiency depends 
on the pat tern of heat c a r r i e r s  movement,  on the rated value of the regenera t ion factor ,  and on the heat-  
t r ans fe r  surface  charac ter i s t ics .  

The effect of nonuniformity is most  pronounced in counterflow heat exchangers (Fig. 3a). In units of 
this type the heat t ransfer  between individual gas s t r eamer s  and the air  over the entire extent of the duets 
occurs  with the water  equivalents rat ios for the heat c a r r i e r s  remaining constant. When the discharge 
is nonuniform, this causes the medium with a lower water equivalent to heat (cool) fast  a l ready in the sec -  
tion near the entrance. As a result ,  the tempera ture  drop in the remaining part  of the ducts will be con- 
s iderably reduced and a large portion of the surface becomes not fully effective. 

In crossf low heat exchangers  the a i r  s t r e a m e r s  (heat c a r r i e r s  uniformly distributed among the 
ducts in the block) move with a continually changing water  equivalents rat io co b but the mean value of co 
for the entire path can be calculated. Under such conditions, the slower heating of a ir  at some surface 
segments  (where col < co) is part ial ly compensated by a fas ter  heating at other surface segments  (where 
col > co) and this leads to a much less reduced efficiency than in the case of counterflow heat exchangers.  

The effect of the rated ~r and c values is to be explained as due to s imi la r  factors .  

In heat exchangers designed with complex patterns of heat c a r r i e r  flow (multipath-crossflow, Z-  
flow) it is also of secondary  significance how the discharge nonuniformity var ies  ac ros s  the block face. This 
was confirmed by efficiency calculations for such heat exchangers with the heat c a r r i e r s  distributed ac -  
cording to either Gg = 1 + a(2x - 1) or Gg = 1 - a(2x - 1): the values of A~? for both cases  did not differ by 
more  than 0.003-0.004. 

In mul t ipath-crossf low heat exchangers the effect of the discharge nonuniformity on the regenerat ion 
factor  appears  about equally independent of the number of sections and, therefore ,  the magnitudes of A~? 
here  may be est imated f rom the data of Fig. 3b for a single-path crossflow. 

In Z-flow heat exchangers  the change of the regenera t ion factor  may be est imated f rom the data of 
Fig. 3c. Here M is a parameter  which accounts for the effect of sections with the working media in a 
crossf low on the value of ~r: 

- -  , k ' F '  k " F "  M -= 2Mg where Mg = and Mg = . 
2Mg -I- M g '  CrgGg q:gGg 

Here symbols with a pr ime refer  to sections I and HI of the heat exchanger (Fig. 3c) with a c r o s s -  
flow of the working media, while symbols with a double pr ime refer  to sect ion II with a counterflow. 

The Z-flow heat exchanger becomes a simple counterflow unit when M = 0 and a single-path c r o s s -  
flow unit with M = 1. 

Exper iments  were performed with a setup shown schematical ly  in Fig. 4. 

The heat exchangers Nos. 1 and 2 used in testing were  of a p la te-and-r ib  cons t ruc t ionwi th  approxi-  
mately  t r iangular  c r o s s - s e c t i o n  ducts and smooth walls. Unit No. 1 was ar ranged to produce a c ross  flow 
pattern, unit No. 2 differed f rom it only in the mode of the heat c a r r i e r  movement:  the ducts in the air  com-  
par tment  were  ar ranged into a Z-pat te rn  with the flow deflected twice by 90 ~ (Fig. 3c). Provis ions were  also 
made for  r ea r rang ing  unit No. 1 to produce a double-path flow (unit No. la). 

The thermal  charac te r i s t i c s  of the useful heating surfaces  were determined on a special  test  stand 
for  the range of Reynolds numbers  f rom 200 to 1000 approximated by the relat ion Nu = 566 Re ~ 

The discharge  nonuniformity was effected by sectionalizing the "gas" s t r eam at the exit f rom the 
hea t - t r ans fe r  block and by subsequently throttling the "gas" flow unequally with a special device (Fig. 4). 
The "gas" discharge ra tes  Gg i were  measured  with a calibrated diaphragm successs ive ly  inserted into each 
of the seven sections in the gas compartment .  
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Thea i r  t empera tures  tai and ta2 were  measured  with TUE-40 nickel res i s tance  the rmomete r s  and a 
UMV bridge giving indications with a 0.2 ~ precision; the "gas" tempera ture  was measured with a m e r c u r y  
the rmomete r  having 0.1 ~ divisions. 

The experimental  data were then processed according to the formulas:  
7 

and 

Ar t __ ta2 - -  tal ta2-- tal . 

Tests  were performed under the following conditions: G ~ 15 kg /h ,  tg i ~ 410~ tal ~ 293~ Pal 
15.104 N / m  2, Pgi ~ 11 �9 104 N / m  2, and for heat exchangers Nos. 1 and 2 at G ~ 25 k g / h  and Pgl ~ 12 

�9 1 0  4 N / m  2. 

For  the crossf low heat exchangers Nos. 1 and la  the .agreement between experimental  and calculated 
values of A~? (see Table 1) was found sat isfactory.  Also the fact that the values of A~7 in such heat ex- 
changers do not depend much on the rated regenera t ion  factor  and on the number of sections was confirmed 
by this experiment.  

Experimental  values of A~7 fall somewhat below calculated ones for  the Z-flow heat exchanger No. 2 
and the explanation for this is, evidently, that the effect of an e r r o r  in determining the various pa ramete r s  
(s, 6s i, c, etc.) is g rea te r  in the counterflow situation. 

On the whole, the performed tests  confirm the conclusions ar r ived at by calculation and theoret ical  
analysis ,  namely: 

The mean- in tegra l  nonuniformity s has the predominant effect on any change in the regenera t ion  
factor  and, therefore ,  it may be used as the c r i te r ion  of nonuniformity. The manner in which the non- 
uniformity var ies  is much less significant. 

The effect of the discharge nonuniformity on the regenerat ion factor  of a heat exchanger is most  
pronounced when the heat c a r r i e r s  move in a eounterflow, especially at high values of ~7 r. 

In crossf low heat exchangers (regardless  of the number of sections) the nonuniformity of d ischarge 
resul ts  in a much less reduced thermal  efficiency and, moreover ,  the effect of the rated 77 r value is in-  
significant here�9 

In all cases ,  hea t - t r ans fe r  elements operating with a turbulent flow of the working medium will im-  
prove the per formance  indices whenever the heat c a r r i e r s  are  nonuniformly distributed. 

Gg = Ggx/Gg,mean 
Ggx, Gg,mean 
Gg, G a 

S 

si, 6s 1 = ( s i / s ) .100% 

~?r, 77r 
A~? = ~Tr -- ~ 

7?gi 
co = o r g G g / c r a G a  
Crg, era 
e 

k, ~g, oz a 

N O T A T I O N  

is the discharge nonuniformity; 
a re  the local and mean discharge ra tes  per unit of heat-exchanger  width; 
a re  the total d ischarge ra tes  of heat c a r r i e r s  (gas and air);  
is the maximum value of l inear nonuniformity Gg = 1 + a (2x - 1) ; 
is the mean- in tegra l  nonuniformity; 
a re  the mean- in tegra l  and relat ive deviations of a profile f rom the linear r e l a -  
tion approximating it; 
a r  e the regenera t ion factor  at uniform and at nonuniform distr ibution of heat c a r r i e r s ;  
is the change in the regenerat ion factor ;  
is the parameter  charac ter iz ing  the thermal  efficiency of an e lementary  section; 
is the rat io between the water  equivalents of the heat c a r r i e r s ;  
a re  the mean specific heat of the gas and of a i r ;  
is the parameter  charac ter iz ing  the var ia t ion of local hea t - t r ans fe r  coefficients: 

k x = kG~; 
a re  the heat t ransmiss ion  and hea t - t rans fe r  coefficients at uniform distribution 
of heat c a r r i e r s ;  
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ta~, tg~, ta2, tg 2 

T = (t - t a l ) / ( t g  1 - ta~) 
n 

F 
d 

1 

Fk 
l 

t .  

2. 

3. 

4. 
5. 

a r e  the m e a n - m a s s  t e m p e r a t u r e s  of heat c a r r i e r s  (air and gas) at the ent rance  
to and at  the exit f r o m  a heat  exchanger;  
is the t e m p e r a t u r e  of a heat  c a r r i e r  exp re s sed  as a d imens ion less  quantity; 
is the number  of e l e m e n t a r y  sect ions;  
is the exponent in the expres s ion  Nug = AgRee'g; 
is the a r e a  of the hea t -exchanger  sur face ;  
is the combinat ions (products) o f / - f a c t o r s  out of i e lements ;  

is the combinat ions  (products) of k f ac to r s  out of 1 -e lements  with repet i t ions .  
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